If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=4=8
We move all terms to the left:
3x^2-(4)=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $
| -1+2r=11 | | 12x=28-3x+7=5 | | 8=(5x+6) | | x/8+20=360 | | 16x+3=115 | | 8=n-79 | | 420=5*x | | k-84=9 | | 99=v+47 | | 68+3y+8=180 | | x/8+62=360 | | 30=h-22 | | 4x^2+4=26 | | 4x+3x=17 | | f-14=10 | | (5x-4)=24 | | z+48=51 | | (10x)+(21x-6)=180 | | m+52=90 | | 7.2x=180 | | 12(x+5)=-3(x-20) | | 9x-21-4x+5=9 | | 13x+102=360 | | 287=(x4)+19 | | n-16(-5)=-60 | | 8x-10=3x90=180 | | f-16=72 | | 20000x50000= | | 9x-13=-2x+20 | | 20=z+5 | | c-48=6 | | c-9=25 |